

Week 13: Recap

Mahmut Selman Sakar

Institute of Mechanical Engineering, EPFL

Final Exam

- Exam Date: 4th of July, Tuesday

Exam Format and Rules

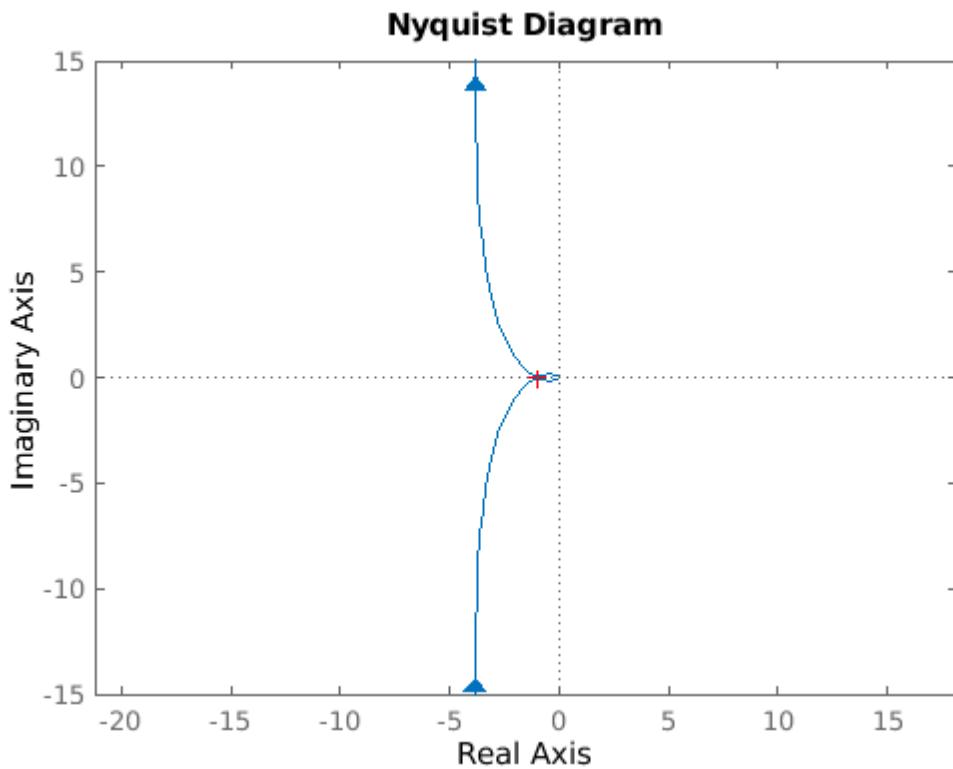
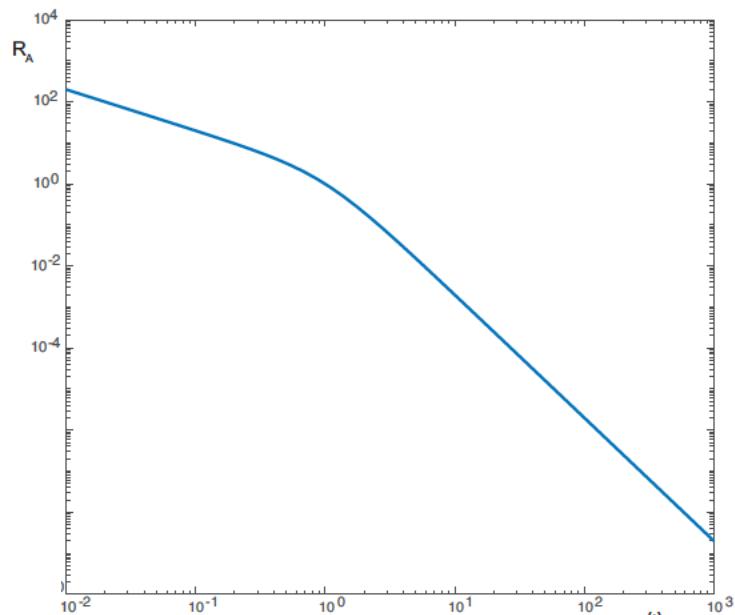
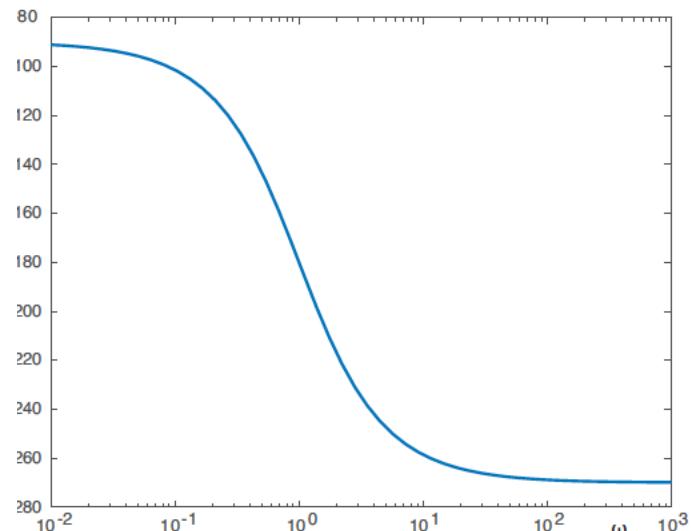
- Hand-written Notes: A4 page, double-sided
- Basic Calculator (non-programmable)
- We will provide Laplace Transform Tables
- Check Moodle for details and announcements

Extra Materials

- Previous exam problems
- Solved problems in Polycopie

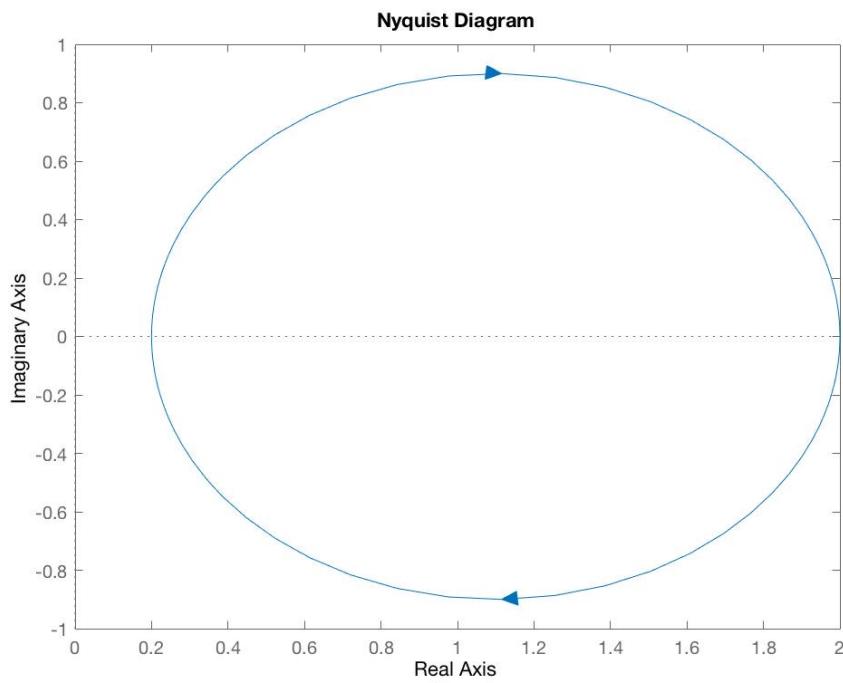
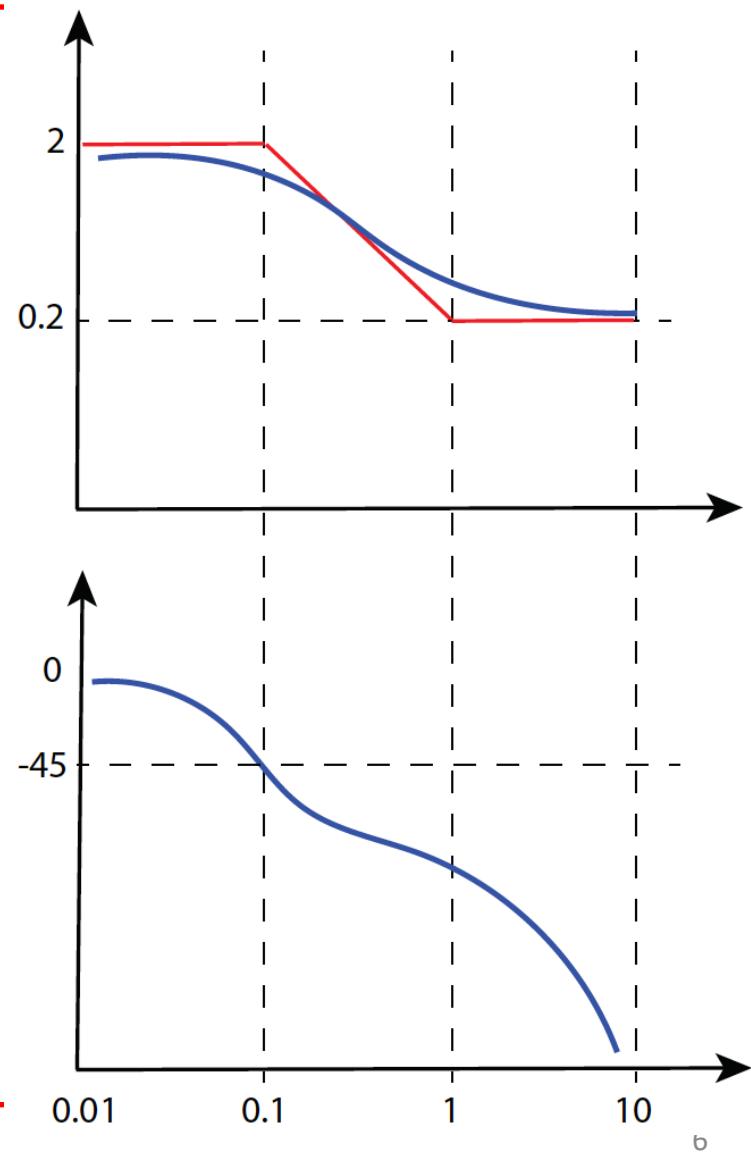
Nyquist Plots (PS 11)

$$G(s) = \frac{2}{s(s + 1)^2}$$



Nyquist Plots (PS 11)

$$G(s) = \frac{2(s + 1)}{10s + 1} e^{-2s}$$



Model-driven Questions

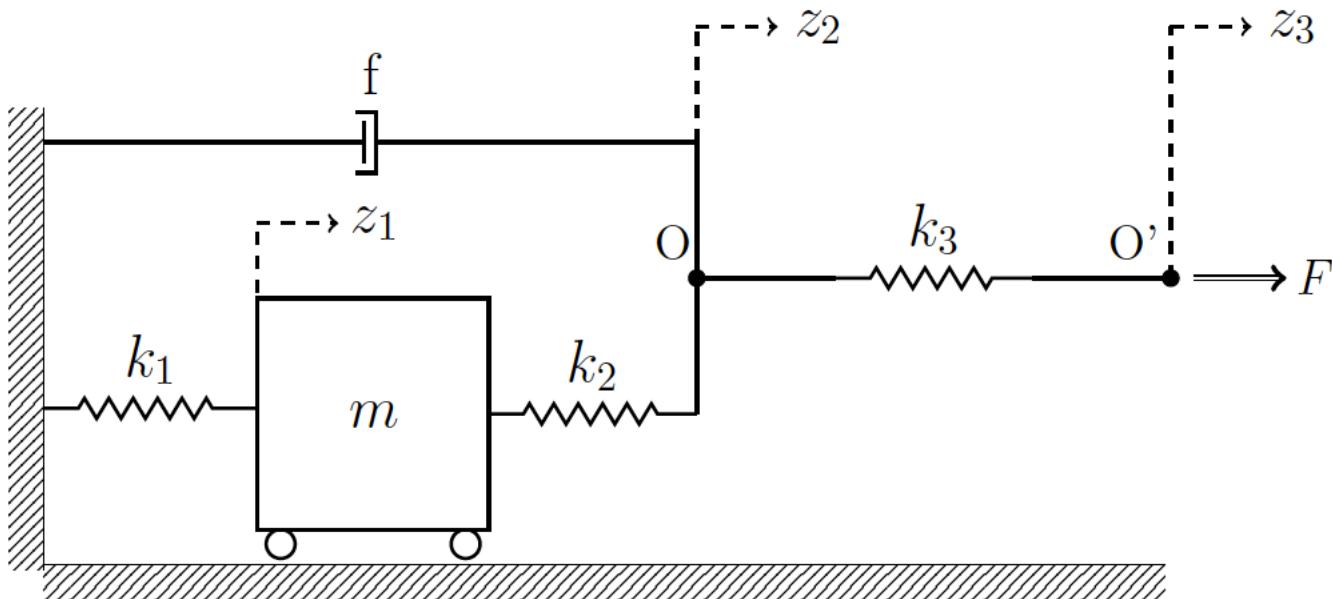
- **Mathematical Modeling** (P2-P3)
- **Linearization** (P4)
 - Properties of Linear and Time-Invariant Systems (P1)
- **State space representation** (P4)
 - Time-domain Analysis
- **Transfer Function: Laplace Transform** (P6)
 - Inverse Laplace Transform for Time-domain Analysis (P7)
 - **Sinusoidal Transfer Function** for Frequency Domain Analysis (P9)
 - **Poles and Zeros**: Stability (P8)
- Impulse Response (P5)
 - **Convolution Operation**: Time-domain Analysis
- **Generating Diagrams**: Output vs time, Bode Plot, Nyquist Plot (P10)

Data-driven Questions

- Extract information from data and plots (P10)
 - **Unit-step response:** Time-domain analysis
 - **Settling time, rise time, peak time, overshoot, damping**
 - Transient response
 - Find transfer function
 - Switch to frequency response
 - Reconstruct mathematical model and identify the system
 - Bode plots
 - **Corner frequency, resonant frequency**
 - Steady-state response
 - **Design of filters**
 - Find transfer function
 - Switch to time domain response
 - Reconstruct mathematical model and identify the system

Problem 1 (Modeling)

- System is initially at rest.



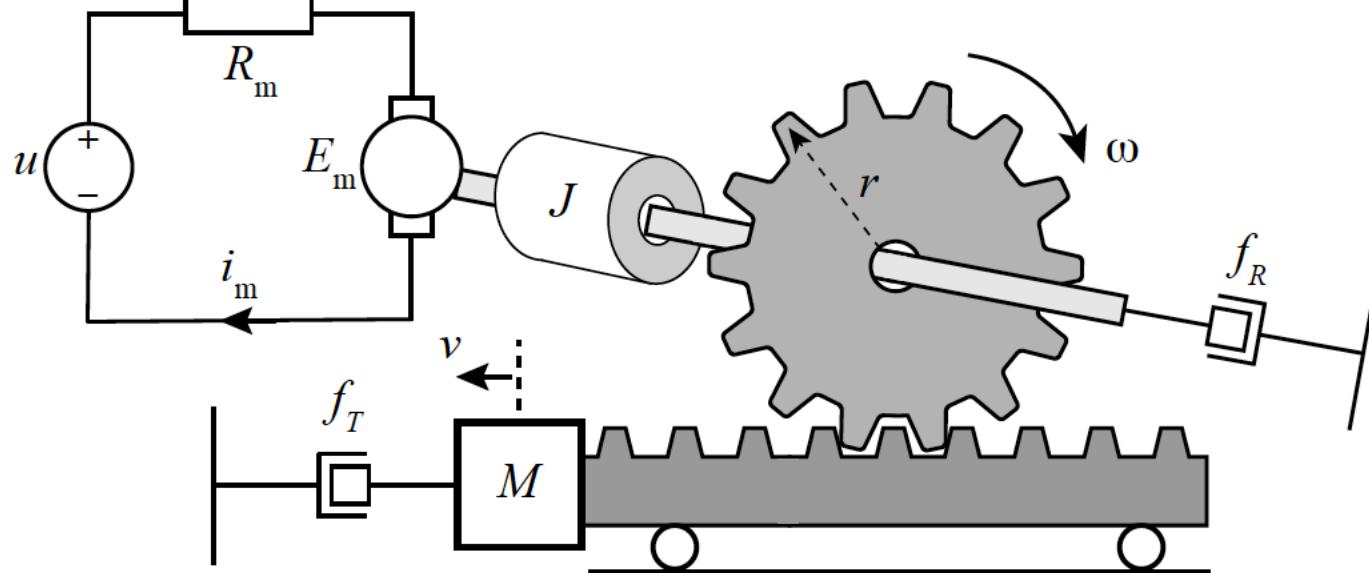
- Equations of motion
- State-space representation
- Transfer function
- Analogous circuit

Problem 1: Notes

- System: Mechanical, electrical, or electromechanical
- Pay attention to definitions of parameters and variables
- **What assumptions did we make to simplify the problem?**
- Analogous circuit: Switching between systems

Problem 1 (Modeling)

- System is initially at rest.



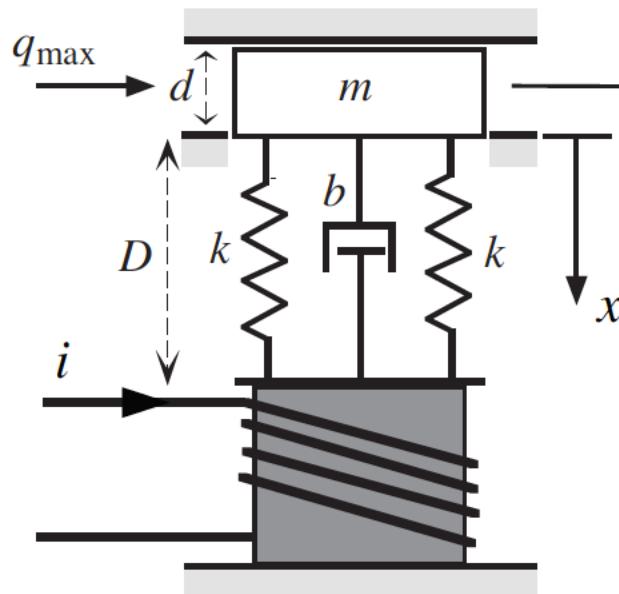
$$E_m(t) = K_m \omega(t)$$

$$T_m = K_t i_m(t)$$

- Equations of motion
- Transfer function
- Unit-step response
- Calculate the output for a given input (Laplace)

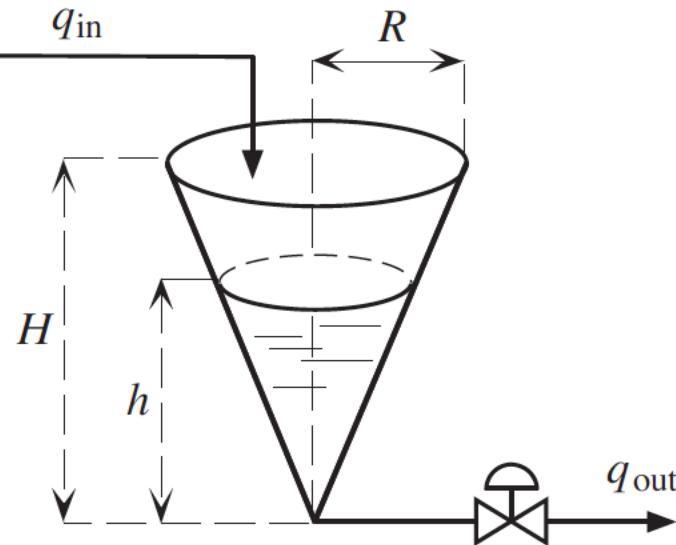
Problem 1 (Modeling)

- System is initially at rest.



$$q_{\text{in}} = q_{\max}(x/d)$$

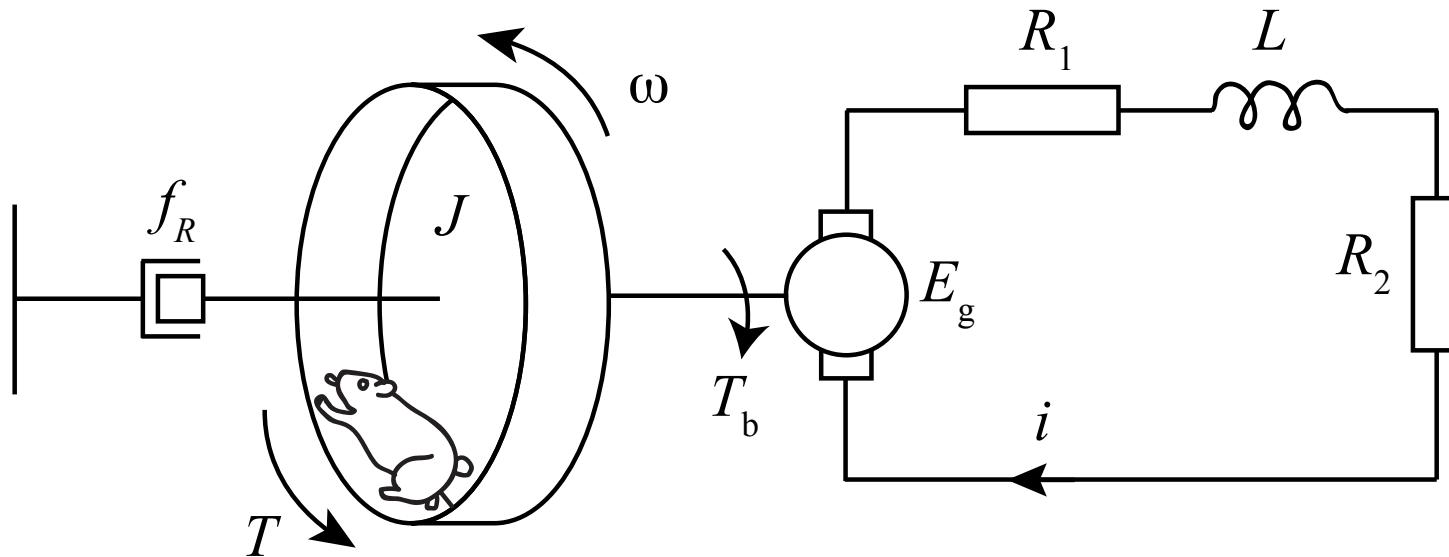
$$F(x, i) = \frac{L}{2} \frac{i^2}{(D - x)^2}$$



$$q_{\text{out}} = c\sqrt{h(t)}$$

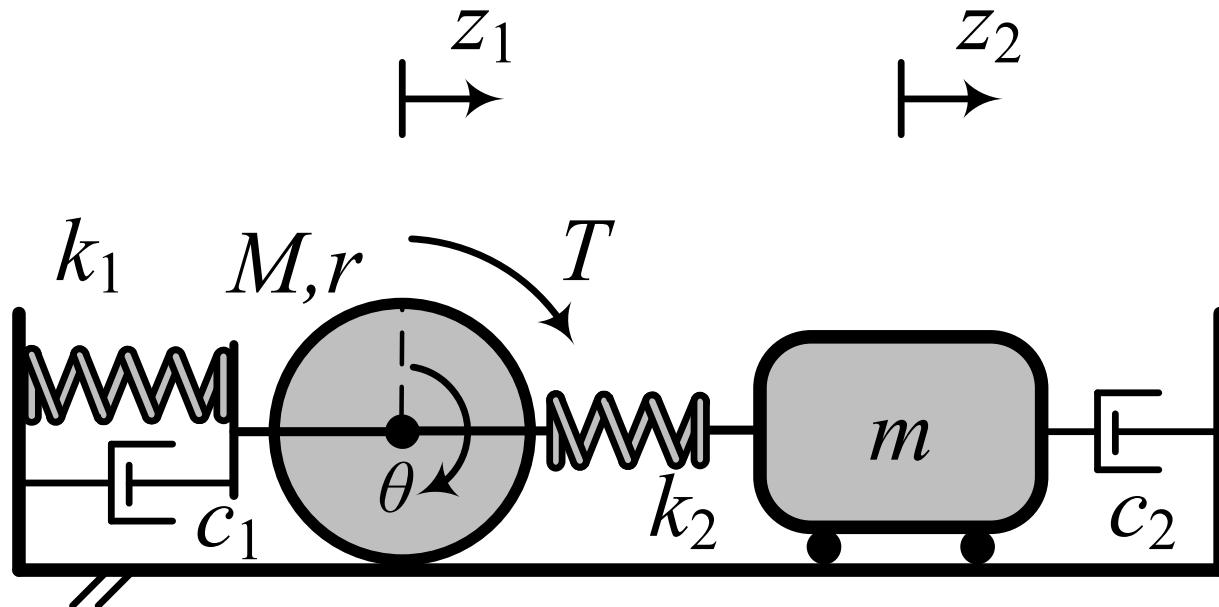
- Equations of motion (PS3 Ex4 and PS4 Ex3)
- Linearize the system around a given equilibrium point
- State-space representation

Problem 1 (Modeling)



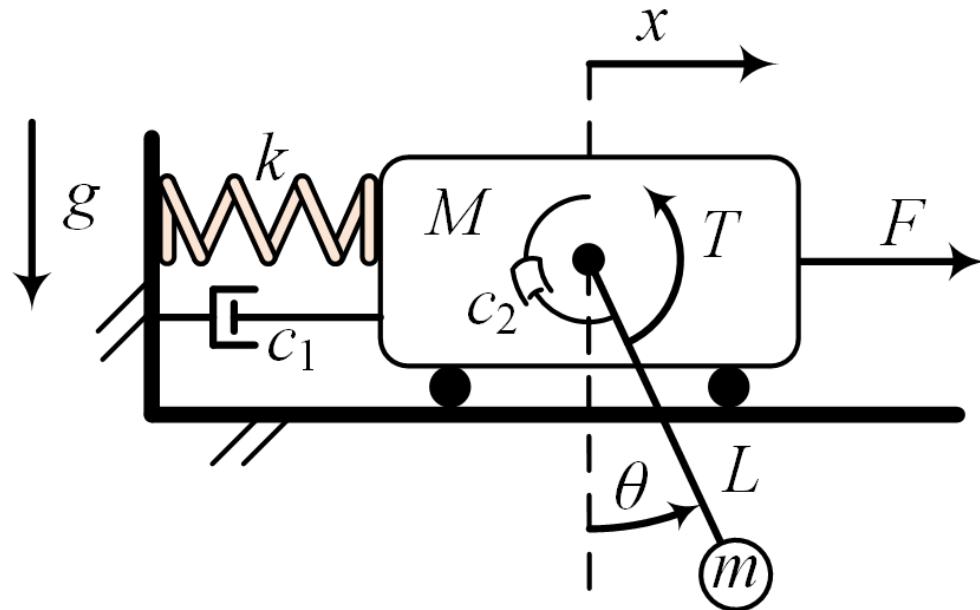
- Equations of motion
- State-space representation
- Transfer function

Problem 1 (Modeling)



- Equations of motion
- State-space representation
- Transfer function

Problem 1 (Modeling)



- Equations of motion
- State-space representation
- Transfer function

Problem 1 (Linearization)

- Nonlinear System

$$\dot{x}_1 = 2x_1 + 2x_1x_2 + u \quad x_1(0) = 0$$

$$\dot{x}_2 = x_2 + 3x_1x_2 \quad x_2(0) = 0$$

- Linearize around a given equilibrium point

$$\bar{u} = 1 \quad \bar{x}_1, \bar{x}_2 \neq 0$$

- **Get comfortable with the Jacobian linearization approach**

Equilibrium Point (Lecture 4 Slide 25)

$$\dot{x}(t) = f[x(t), u(t)]$$

$$x(0) = x_0$$

$$y(t) = g[x(t), u(t)]$$

- At the equilibrium point $(\bar{u}, \bar{x}, \bar{y})$, the derivatives will go to zero.

$$\bar{y} = g[\bar{x}, \bar{u}]$$

Taylor Series Approximation

$$\dot{x} = f[\bar{x}, \bar{u}] + \frac{\partial f}{\partial x} \bigg|_{\bar{u}, \bar{x}} (x - \bar{x}) + \frac{\partial f}{\partial u} \bigg|_{\bar{u}, \bar{x}} (u - \bar{u})$$

$$y = g[\bar{x}, \bar{u}] + \frac{\partial g}{\partial x} \bigg|_{\bar{u}, \bar{x}} (x - \bar{x}) + \frac{\partial g}{\partial u} \bigg|_{\bar{u}, \bar{x}} (u - \bar{u})$$

Approximation in Matrix Form (Lecture 4 Slide 26)

- Introduce variables for small variations:

$$\delta x(t) := x(t) - \bar{x} \quad \delta u(t) := u(t) - \bar{u} \quad \delta y(t) := y(t) - \bar{y}$$

- Note that $\delta \dot{x} = \dot{x}$

$$\delta \dot{x} = \frac{\partial f}{\partial x} \bigg|_{\bar{u}, \bar{x}} \delta x + \frac{\partial f}{\partial u} \bigg|_{\bar{u}, \bar{x}} \delta u \quad \delta y = \frac{\partial g}{\partial x} \bigg|_{\bar{u}, \bar{x}} \delta x + \frac{\partial g}{\partial u} \bigg|_{\bar{u}, \bar{x}} \delta u$$

Linearized Version of State Model

$$\delta \dot{x} = A \delta x + B \delta u$$

$$A := \frac{\partial f}{\partial x} \bigg|_{\bar{u}, \bar{x}} \quad C := \frac{\partial g}{\partial x} \bigg|_{\bar{u}, \bar{x}}$$

$$\delta y = C \delta x + D \delta u$$

$$B := \frac{\partial f}{\partial u} \bigg|_{\bar{u}, \bar{x}} \quad D := \frac{\partial g}{\partial u} \bigg|_{\bar{u}, \bar{x}}$$

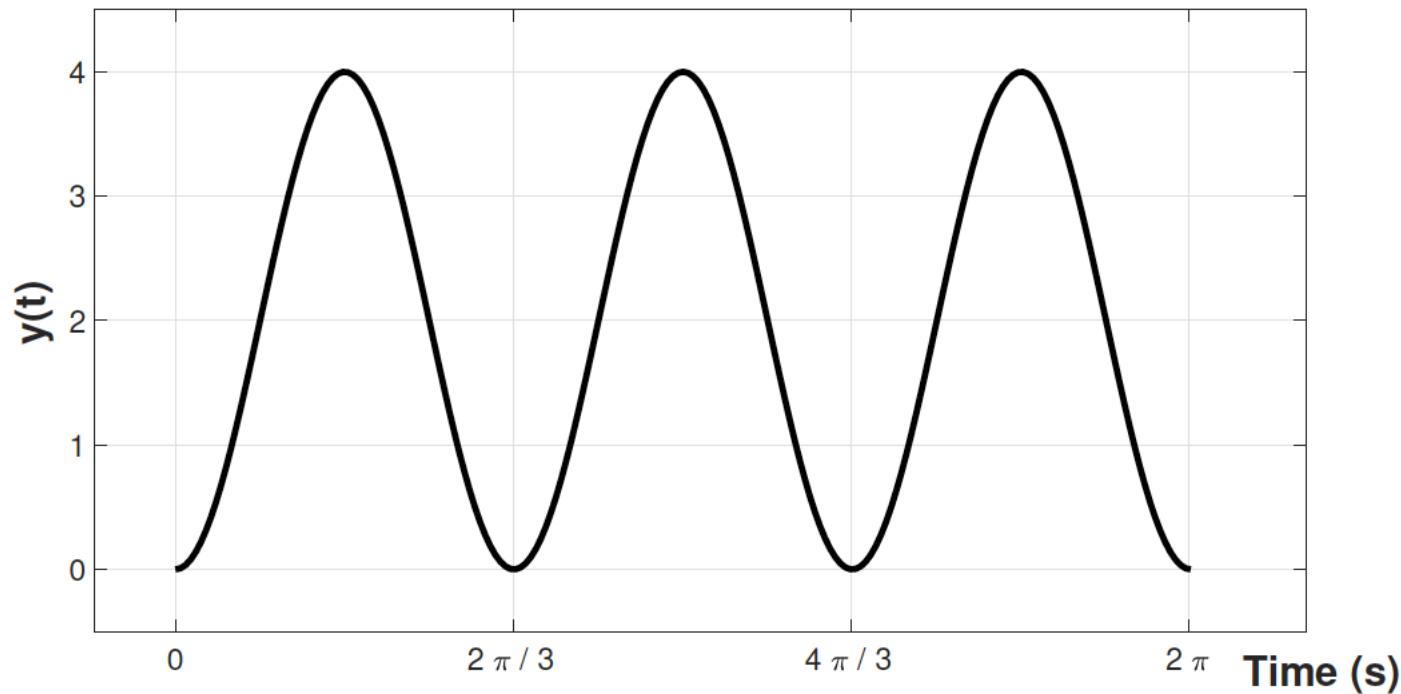
$$\delta x(0) = x_0 - \bar{x}$$

Problem 2

- Transient response characteristics
 - Impulse response
 - Step response
 - Ramp response
 - Arbitrary input function
- Rise time, peak time, settling time
- Location of poles
- Stability

Problem 2

- Finding the transfer function from the unit-step response



Problem 2

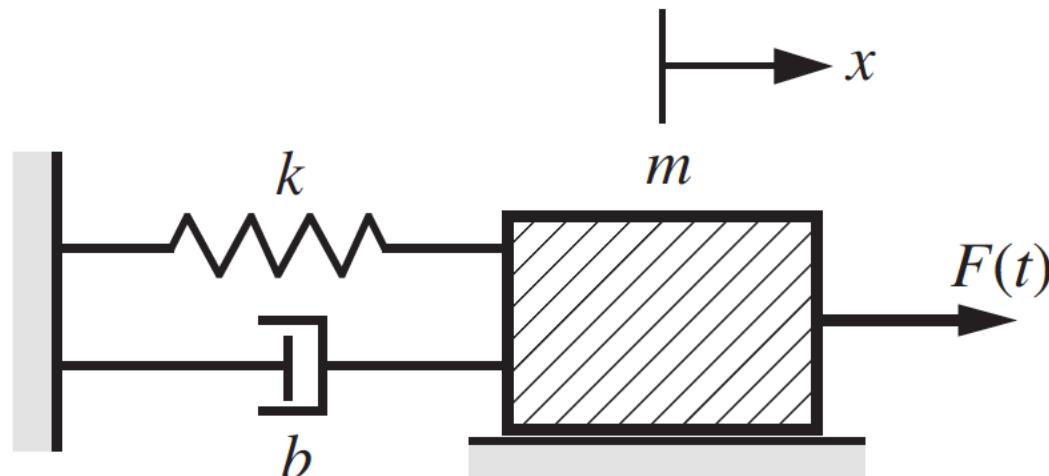
- Pole placement vs the response characteristics

Consider a second order LTI system with two poles p_1 and p_2 , one zero z_1 , and gain K .

1. (3 points) Write down the transfer function of the system.
2. (4 points) Calculate the unit step response of the system given that $p_1 = -2$, $p_2 = -1$, $z_1 = -5$. and $K = 2$.
3. (6 points) How would the unit step response change if we move the zero from $z_1 = -5$ to $z_1 = -0.5$? Show your work with plots.

Problem 2

- Reconstruction of the system from empirical values



(10 points) Determine the numerical values of m , k , and b so that when the input force is $F(t) = 100\varepsilon(t)$ N

- the mass resides at $x = 2$ cm at the steady-state
- the mass settles to 2% of its final value within 2 seconds
- the maximum percent overshoot of $x(t)$ from its steady-state value is 50%

To ensure you understand the design specifications, first make a rough sketch of the displacement $x(t)$ for $0 \leq t \leq 2$ sec and clearly identify peak time, maximum overshoot, and settling time on the graph. Note that $\varepsilon(t)$ is the unit step function.

Problem 3

- Collection of small questions on Laplace transform and convolution

$$m\ddot{x}(t) = F(t) - kx(t) - f\dot{x}(t) \quad x(0) = \dot{x}(0) = 0$$

$$m = 2 \text{ kg}, \quad k = 10 \text{ N/m}, \quad f = 8 \text{ Ns/m}$$

$$F(t) = \begin{cases} 1 \text{ N} & \text{for } t < 5, \\ 0 & \text{for } t \geq 5. \end{cases}$$

Problem 3

- Collection of small questions on Laplace transform and convolution

Impulse Response

$$g(t) = e^{-t} + e^{-2t}$$

- Find Unit-step Response
 - Convolution
 - Laplace Transform

Problem 3

- Collection of small questions on Laplace transform and convolution

$$\ddot{y}(t) + 8\dot{y}(t) + 17y(t) + 10y(t) = 0$$

$$y(0) = 2, \dot{y}(0) = 1, \ddot{y}(0) = 0.5$$

- Solve the differential equation and calculate the output

Problem 3

- Collection of small questions on Laplace transform and convolution

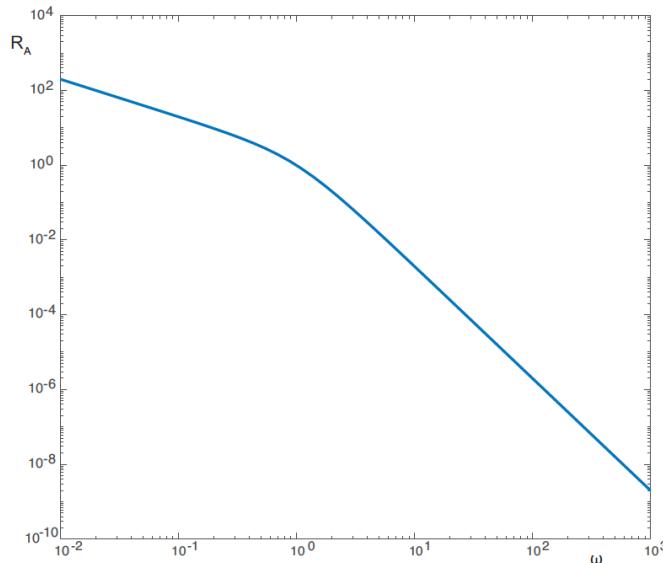
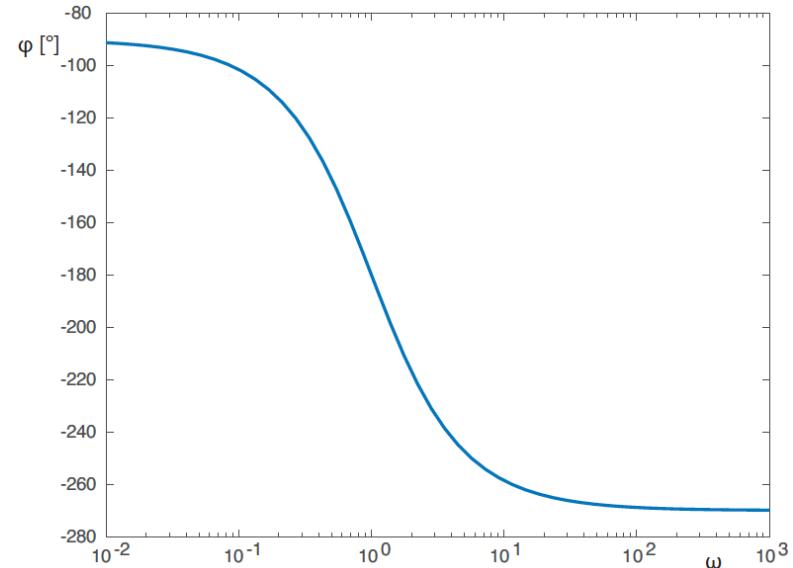
Compute the inverse Laplace transform of

$$G(s) = \frac{3s}{(s^2 + 1)^2}$$

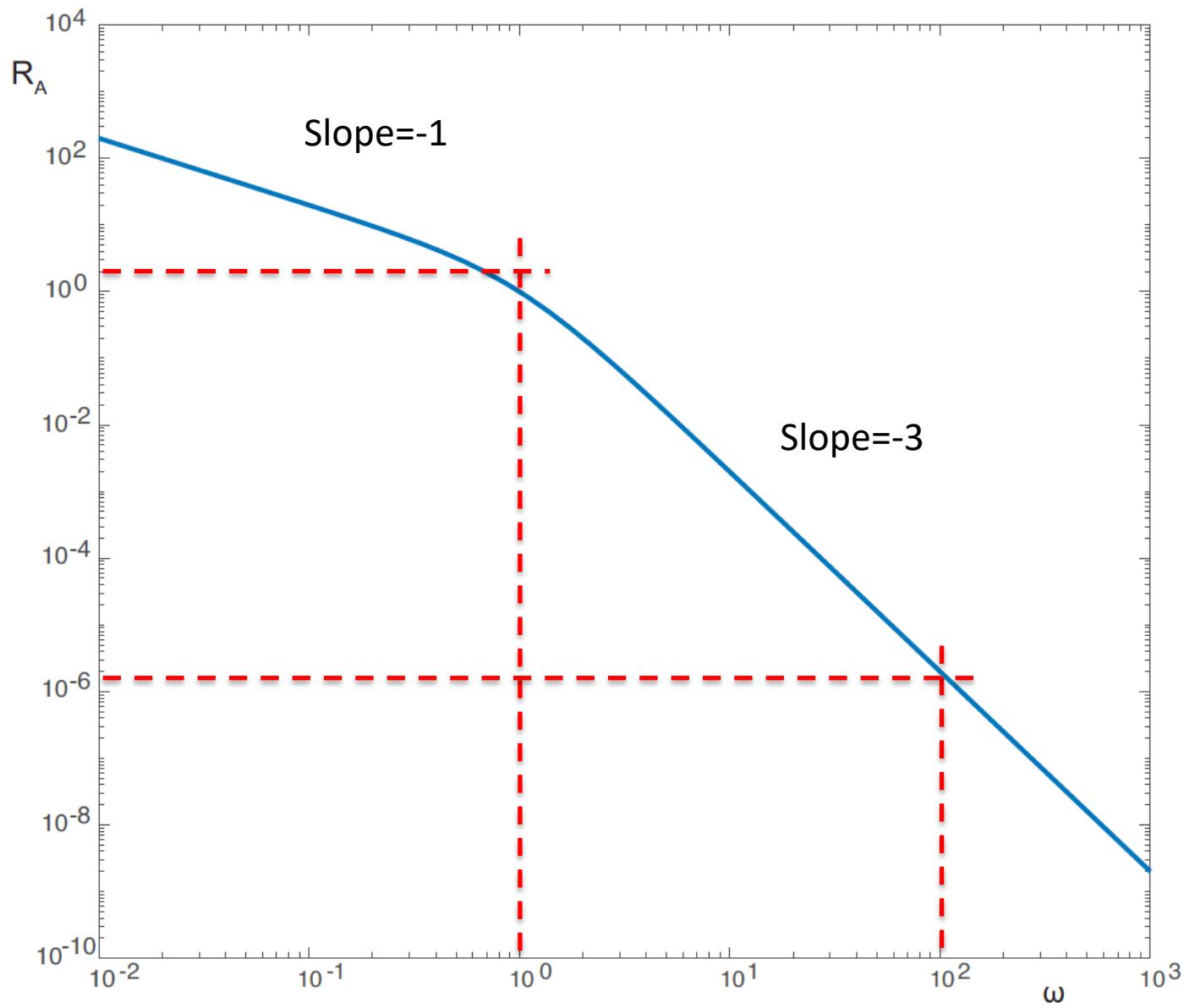
1. (4 points) Using the following property: $\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} F(s)$.
2. (6 points) Using the following convolution integral $f_1(t) * f_2(t) = \int_0^t f_1(\tau) f_2(t - \tau) d\tau$.

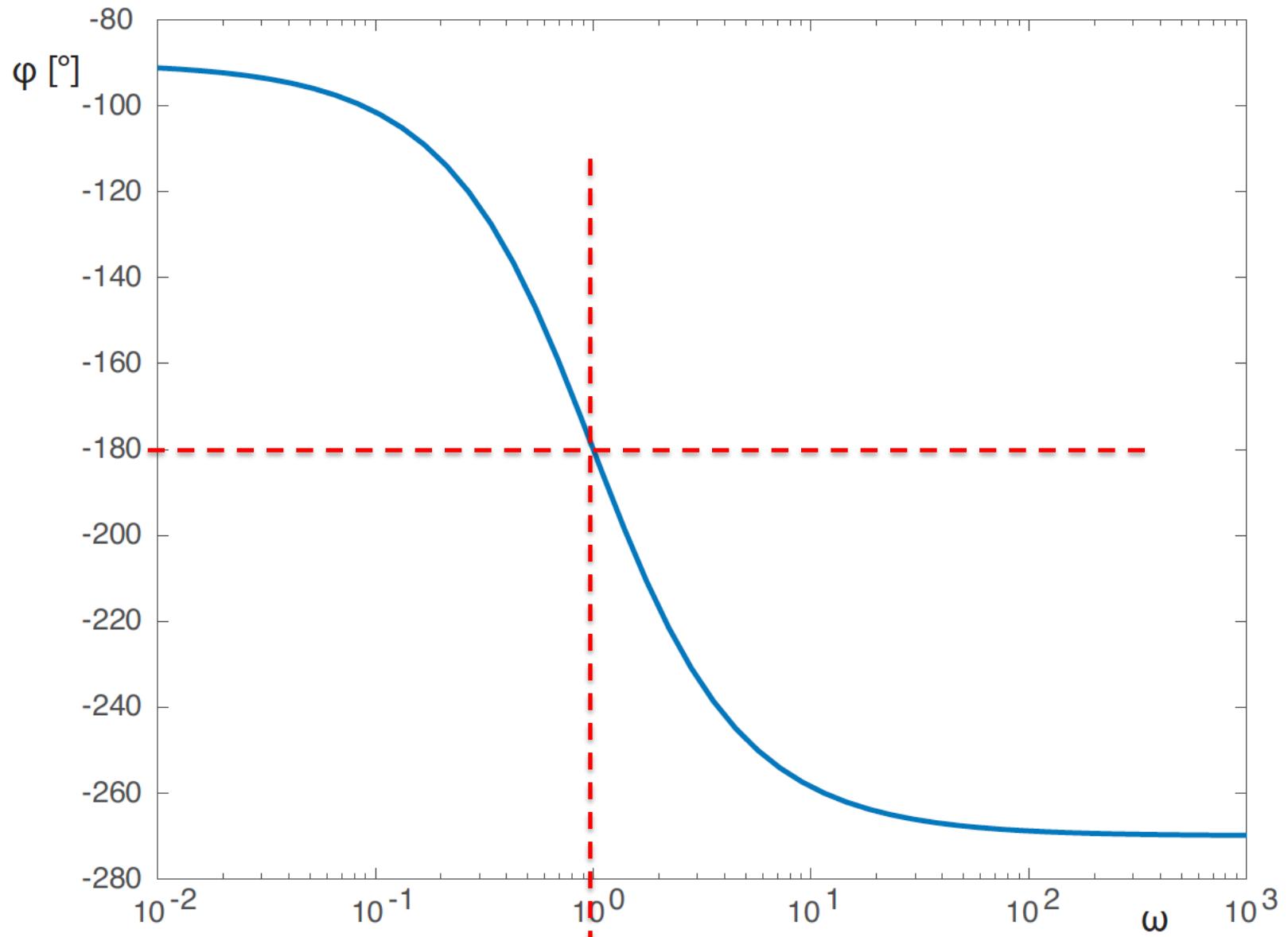
Problem 4 (Frequency Response)

- Bode Plot



- Calculate transfer function
- Steady-state value
- Filter design





Problem 4 (Frequency Response)

- Transfer Function

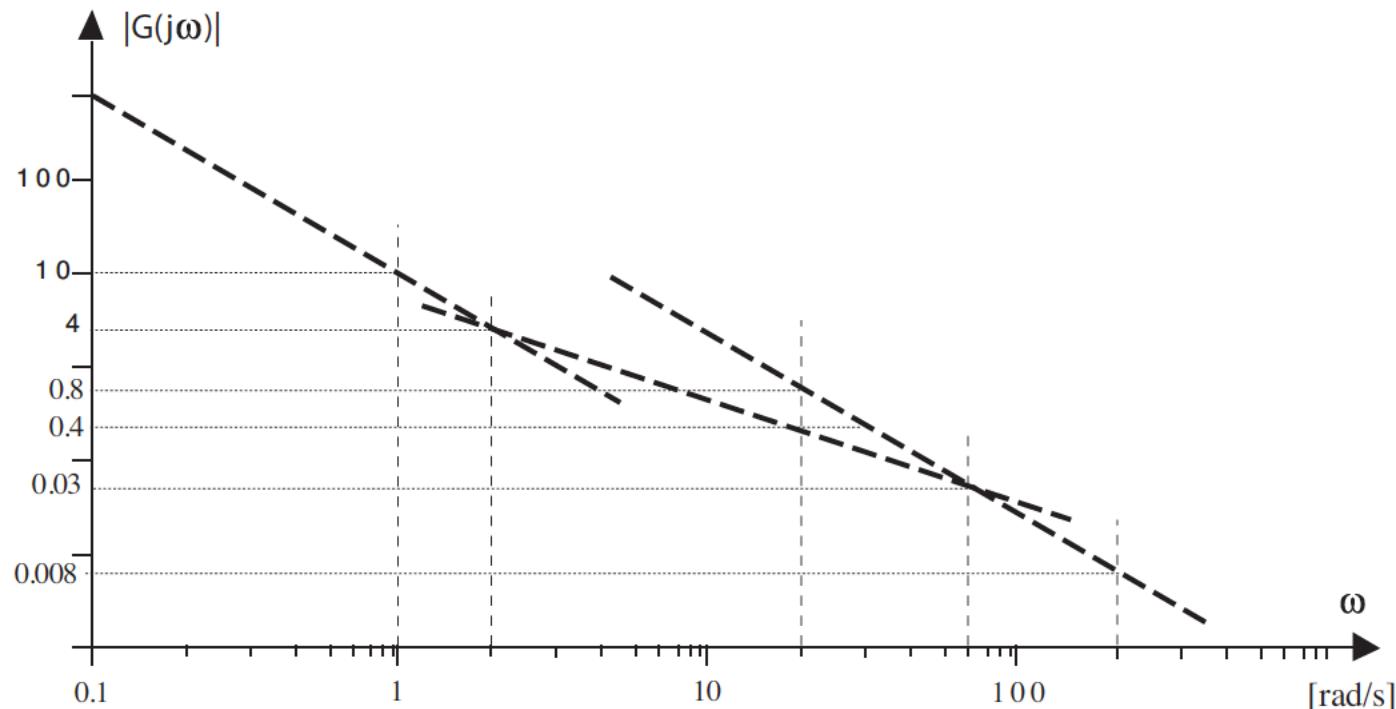
$$G(s) = \frac{K}{s} \frac{1}{(\tau s + 1)^2} \quad K = 2 \text{ and } \tau = 1$$

b) Imagine that we want to design a first order filter (denoted by the transfer function $F(s)$) with a zero at -1 . The filtered system is expected to have a magnitude of 1 and phase shift of -145 at $\omega = 1$. Find the gain and the time constant of $F(s)$ that would lead to the desired specifications. Note that, the transfer function of the filtered system $G_f(s)$ is simply the product of the transfer function of the original system and the transfer function of the first order filter (i.e. $G_f(s) = G(s)F(s)$).

$$F(s) = \frac{K_f(s + 1)}{\tau_f s + 1} \quad G_f(s) = \frac{K_f(s + 1)}{\tau_f s + 1} \frac{2}{s} \frac{1}{(s + 1)^2} = \frac{2K_f}{(\tau_f s + 1)s(s + 1)}$$

Problem 4 (Frequency Response)

- Bode Plot (no complex poles or exponential terms)



- Sketch Phase plot
- Transfer function
- Nyquist plot
- Steady-state Output
 $u(t) = 48\sin(60t)$

Another example on Frequency Response

- Transfer Function

$$G(s) = \frac{10^5 s(s + 100)}{(s + 10)^2(s^2 + 400s + 10^6)}$$

- Sketch Bode plot

Another example on Frequency Response

- Transfer Function

$$G(s) = (s + 2)e^{-s}/s(2s + 1)$$

- Sketch Bode plot
- Nyquist Plot
- Calculate steady-state response if the input is

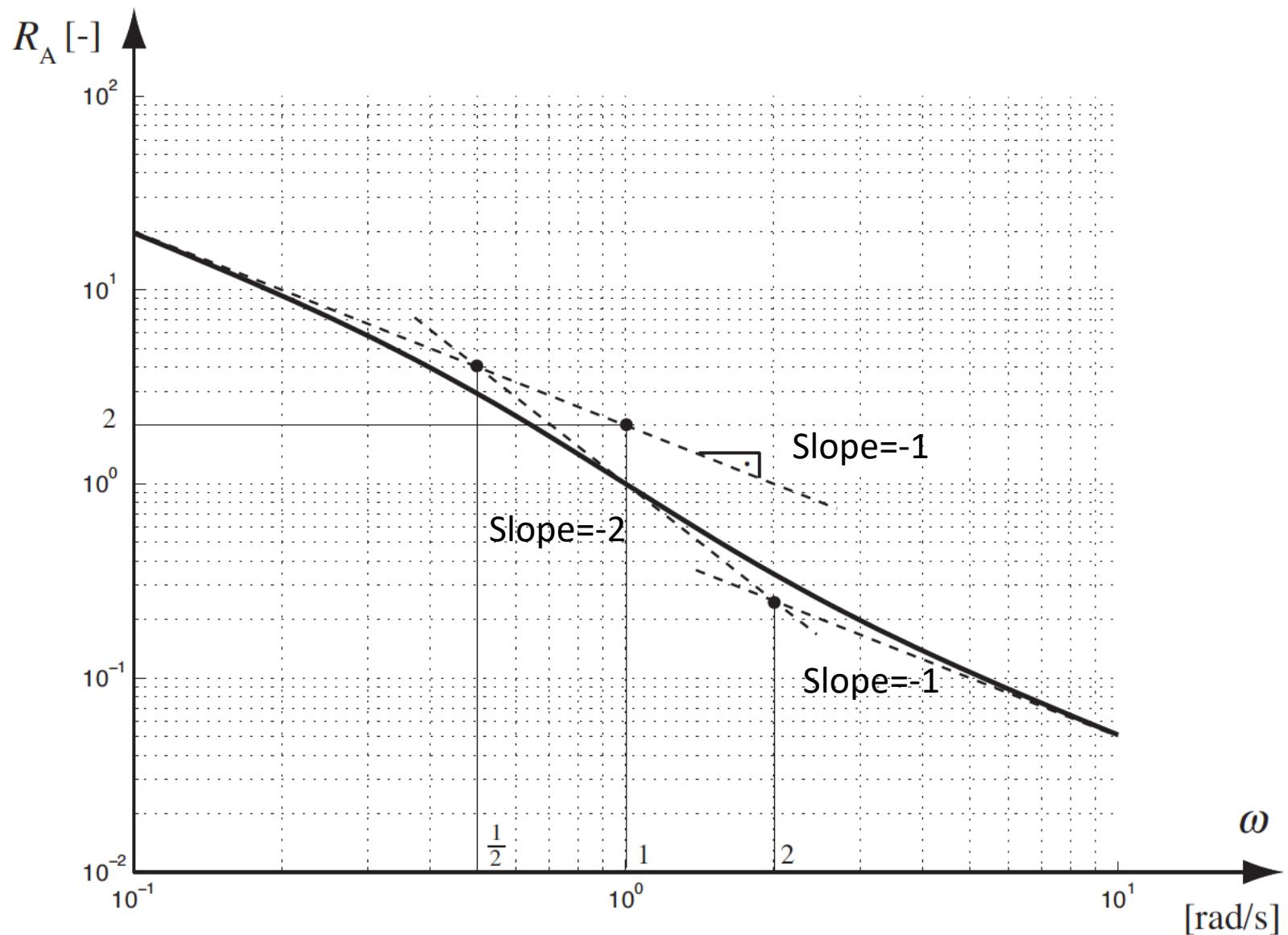
$$u(t) = 2 \sin t$$

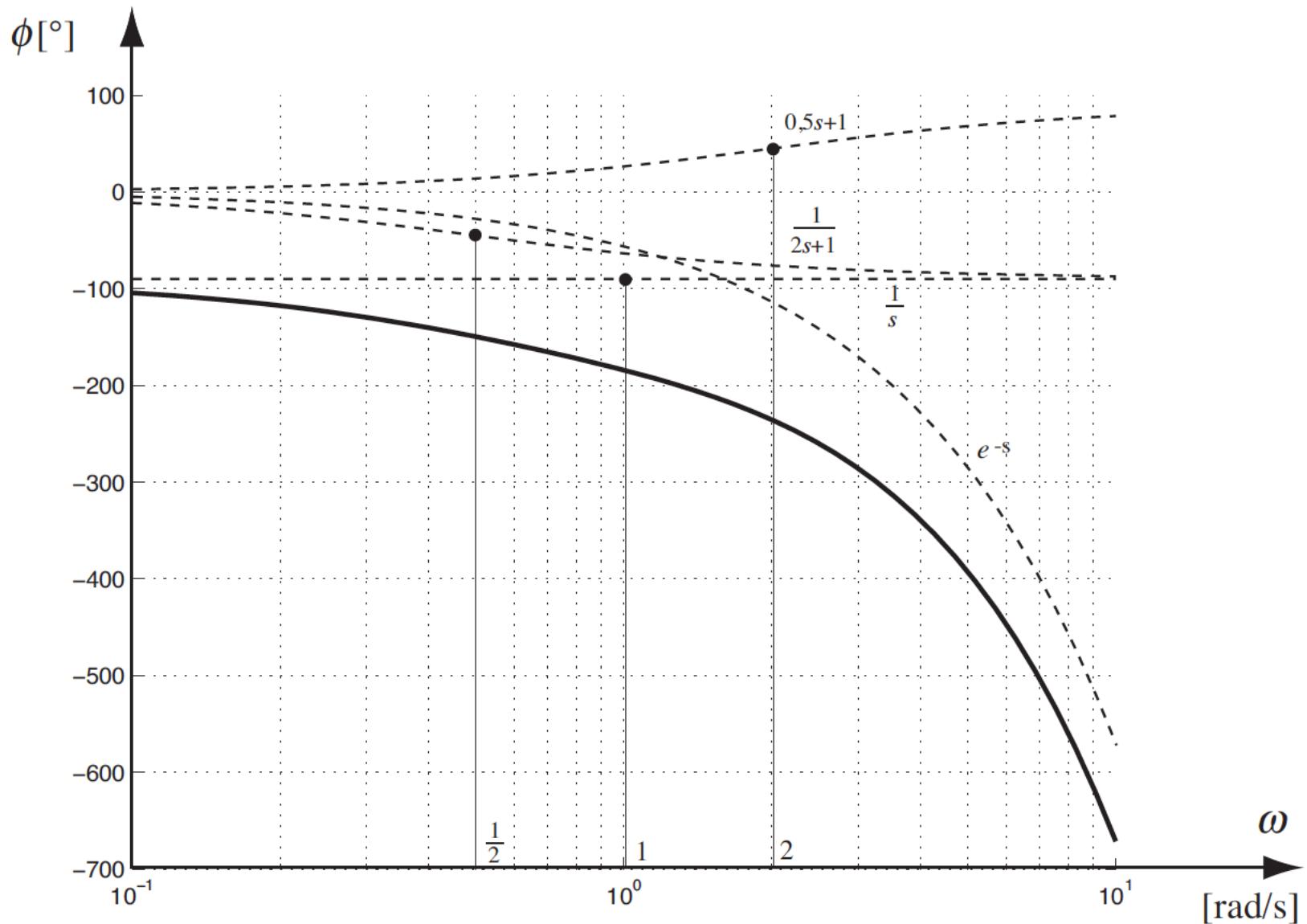
Solution

- Transfer function in **standard form**

$$p_1 = 0, \quad p_2 = -\frac{1}{2}, \quad z_1 = -2$$

$$G(s) = \frac{2\left(\frac{1}{2}s + 1\right)e^{-s}}{s(2s + 1)}$$





Solution

- Input

$$u(t) = 2 \sin t$$

$$R_A = \frac{2 \sqrt{\frac{1}{4} \omega^2 + 1}}{\omega \sqrt{4 \omega^2 + 1}} \quad R_A(\omega = 1) = \frac{2 \sqrt{\frac{1}{4} + 1}}{\sqrt{4 + 1}} = 1$$

$$\varphi = \arctan\left(\frac{1}{2}\omega\right) - \frac{\pi}{2} - \arctan(2\omega) - \omega$$

$$\varphi(\omega = 1) = -3,21 \text{ rad}$$

$$\bar{y}(t) = 2 \sin(t - 3,21)$$

Solution

- From the Bode Plot

$$R_A(\omega = 1) \approx 1 = \frac{A'}{A} \rightarrow A' = 2$$

$$\varphi(\omega = 1) \approx -200^\circ = -3,49 \text{ rad}$$

$$\bar{y}(t) = A' \sin(t - t') = 2 \sin(t - 3,49)$$